Publications
1.
Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
Elastic metamaterials for tuning circular polarization of electromagnetic waves Journal Article
In: Scientific Reports, vol. 6, pp. 28273, 2016.
@article{Zárate2016,
title = {Elastic metamaterials for tuning circular polarization of electromagnetic waves},
author = {Yair Zárate and Sahab Babaee and Sung H. Kang and Dragomir N. Neshev and Ilya V. Shadrivov and Katia Bertoldi and David A. Powell},
url = {http://www.nature.com/articles/srep28273},
doi = {doi:10.1038/srep28273},
year = {2016},
date = {2016-06-20},
journal = {Scientific Reports},
volume = {6},
pages = {28273},
abstract = {Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.
Note: Send e-mail to Prof. Kang at [email protected] if you need a pdf file of the papers below.
2016

Zárate, Yair; Babaee, Sahab; Kang, Sung H.; Neshev, Dragomir N.; Shadrivov, Ilya V.; Bertoldi, Katia; Powell, David A.
Elastic metamaterials for tuning circular polarization of electromagnetic waves Journal Article
In: Scientific Reports, vol. 6, pp. 28273, 2016.
Abstract | Links | BibTeX | Tags: 3D printing, Auxetic, buckling, Chiral, electromagnetic, Metamaterial, Tunable
@article{Zárate2016,
title = {Elastic metamaterials for tuning circular polarization of electromagnetic waves},
author = {Yair Zárate and Sahab Babaee and Sung H. Kang and Dragomir N. Neshev and Ilya V. Shadrivov and Katia Bertoldi and David A. Powell},
url = {http://www.nature.com/articles/srep28273},
doi = {doi:10.1038/srep28273},
year = {2016},
date = {2016-06-20},
journal = {Scientific Reports},
volume = {6},
pages = {28273},
abstract = {Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.},
keywords = {3D printing, Auxetic, buckling, Chiral, electromagnetic, Metamaterial, Tunable},
pubstate = {published},
tppubtype = {article}
}
Electromagnetic resonators are integrated with advanced elastic material to develop a new type of tunable metamaterial. An electromagnetic-elastic metamaterial able to switch on and off its electromagnetic chiral response is experimentally demonstrated. Such tunability is attained by harnessing the unique buckling properties of auxetic elastic materials (buckliballs) with embedded electromagnetic resonators. In these structures, simple uniaxial compression results in a complex but controlled pattern of deformation, resulting in a shift of its electromagnetic resonance, and in the structure transforming to a chiral state. The concept can be extended to the tuning of three-dimensional materials constructed from the meta-molecules, since all the components twist and deform into the same chiral configuration when compressed.