Publications
Kang, Sung Hoon; Pokroy, Boaz; Mahadevan, L.; Aizenberg, Joanna
Control of Shape and Size of Nanopillar Assembly by Adhesion-Mediated Elastocapillary Interaction Journal Article
In: ACS Nano, vol. 4, pp. 6323–6331, 2010, (Featured on the cover and highlighted in the issue.).
@article{Kang2010,
title = {Control of Shape and Size of Nanopillar Assembly by Adhesion-Mediated Elastocapillary Interaction},
author = {Sung Hoon Kang and Boaz Pokroy and L. Mahadevan and Joanna Aizenberg},
url = {http://pubs.acs.org/doi/abs/10.1021/nn102260t},
year = {2010},
date = {2010-11-01},
journal = {ACS Nano},
volume = {4},
pages = {6323–6331},
abstract = {Control of self-organization of nanofibers into regular clusters upon evaporation-induced assembly is receiving increasing attention due to the potential importance of this process in a range of applications including particle trapping, adhesives, and structural color. Here we present a comprehensive study of this phenomenon using a periodic array of polymeric nanopillars with tunable parameters as a model system to study how geometry, mechanical properties, as well as surface properties influence capillary-induced self-organization. In particular, we show that varying the parameters of the building blocks of self-assembly provides us with a simple means of controlling the size, chirality, and anisotropy of complex structures. We observe that chiral assemblies can be generated within a narrow window for each parameter even in the absence of chiral building blocks or a chiral environment. Furthermore, introducing anisotropy in the building blocks provides a way to control both the chirality and the size of the assembly. While capillary-induced self-assembly has been studied and modeled as a quasi-static process involving the competition between only capillary and elastic forces, our results unequivocally show that both adhesion and kinetics are equally important in determining the final assembly. Our findings provide insight into how multiple parameters work together in capillary-induced self-assembly and provide us with a diverse set of options for fabricating a variety of nanostructures by self-assembly.},
note = {Featured on the cover and highlighted in the issue.},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Note: Send e-mail to Prof. Kang at [email protected] if you need a pdf file of the papers below.
2010

Kang, Sung Hoon; Pokroy, Boaz; Mahadevan, L.; Aizenberg, Joanna
Control of Shape and Size of Nanopillar Assembly by Adhesion-Mediated Elastocapillary Interaction Journal Article
In: ACS Nano, vol. 4, pp. 6323–6331, 2010, (Featured on the cover and highlighted in the issue.).
Abstract | Links | BibTeX | Tags: Adhesion, bio-inspired science and engineering, Elastocapillary, Evaporation, Nanopillar, Patterning, Self-Organization
@article{Kang2010,
title = {Control of Shape and Size of Nanopillar Assembly by Adhesion-Mediated Elastocapillary Interaction},
author = {Sung Hoon Kang and Boaz Pokroy and L. Mahadevan and Joanna Aizenberg},
url = {http://pubs.acs.org/doi/abs/10.1021/nn102260t},
year = {2010},
date = {2010-11-01},
journal = {ACS Nano},
volume = {4},
pages = {6323–6331},
abstract = {Control of self-organization of nanofibers into regular clusters upon evaporation-induced assembly is receiving increasing attention due to the potential importance of this process in a range of applications including particle trapping, adhesives, and structural color. Here we present a comprehensive study of this phenomenon using a periodic array of polymeric nanopillars with tunable parameters as a model system to study how geometry, mechanical properties, as well as surface properties influence capillary-induced self-organization. In particular, we show that varying the parameters of the building blocks of self-assembly provides us with a simple means of controlling the size, chirality, and anisotropy of complex structures. We observe that chiral assemblies can be generated within a narrow window for each parameter even in the absence of chiral building blocks or a chiral environment. Furthermore, introducing anisotropy in the building blocks provides a way to control both the chirality and the size of the assembly. While capillary-induced self-assembly has been studied and modeled as a quasi-static process involving the competition between only capillary and elastic forces, our results unequivocally show that both adhesion and kinetics are equally important in determining the final assembly. Our findings provide insight into how multiple parameters work together in capillary-induced self-assembly and provide us with a diverse set of options for fabricating a variety of nanostructures by self-assembly.},
note = {Featured on the cover and highlighted in the issue.},
keywords = {Adhesion, bio-inspired science and engineering, Elastocapillary, Evaporation, Nanopillar, Patterning, Self-Organization},
pubstate = {published},
tppubtype = {article}
}